$$
\underset{(689 / 184)}{\text { A N E X O }}
$$

ESTUDIO HIDROGEOLÓGICO SOBRE EL ESTADO DE LOS MANANTIALES SITUADOS EN LA TRAZA DEL TÚNEL DE LA LÍNEA DE ALTA VELOCIDAD LEÓNOVIEDO:

- MANANTIALES DE CABORNERA

Diciembre de 2006

ESTUDIO HIDROGEOLÓGICO SOBRE EL ESTADO DE LOS MANANTIALES SITUADOS EN LA TRAZA DEL túnel de la línea de alta velocidad leónOVIEDO:

- MANANTIALES DE CABORNERA

Diciembre de 2006

El presente estudio se realiza a solicitud del Administrador de Infraestructuras Ferroviarias (ADIF) y en virtud del Acuerdo Marco firmado entre ADIF y el Instituto Geológico y Minero de España (IGME), sobre asesoramiento en aspectos geológicos e hidrogeológicos relacionados con distintas obras ferroviarias

Ha sido realizado por la Dirección de Hidrogeología y Aguas Subterráneas del IGME, con la dirección de José María Pernía Llera

AUTORES DEL ESTUDIO.

José María Pernía Llera. IGME - Madrid
Mónica Meléndez Asensio. IGME - Oviedo
Julio López Gutiérrez. IGME - Madrid

Han colaborado en los trabajos de campo.
Nemesio Heredia Carballo. IGME - León.
Carlos Zapatero Menchero. IGME - Oviedo.

ÍNDICE

Pág.

1. INTRODUCCIÓN 2
2. MARCO GEOLÓGICO 3
2.1 Introducción 3
2.2. Estratigrafía 4
2.3. Tectónica 10
3. MARCO HIDROGEOLÓGICO 11
3.1. Introducción 11
3.2. Comportamiento hidrogeológico de las formaciones. 12
3.3. Hidrogeología regional 18
4. INCIDENCIAS SIGNIFICATIVAS DE ÍNDOLE HIDROGEOLÓGICO DURANTE LA PERFORACIÓN DE LOS TÚNELES 19
5. MANANTIALES DE LA ZONA DE CABORNERA 23
5.1. Descripción 23
5.2. Parámetros medidos 26
5.3. Aspectos hidrogeológicos de los manantiales 26
5.4. Afección, recuperación de los manantiales 27
5.5. Recomendaciones 33
6. CONSIDERACIONES GENERALES: CONCLUSIONES Y RECOMENDACIONES 34
BIBLIOGRAFÍA UTILIZADA 35
ANEXO: Mapas y Cortes 36
Mapa 1. Mapa HidrogeológicoCorte 1. Corte I-I'

1. INTRODUCCIÓN

El presente estudio se realiza a solicitud del Administrador de Infraestructuras Ferroviarias (ADIF) y en virtud del Acuerdo Marco firmado entre ADIF y el Instituto Geológico y Minero de España (IGME), sobre asesoramiento en aspectos geológicos e hidrogeológicos relacionados con distintas obras ferroviarias.

De acuerdo con dicha solicitud, el objetivo de este estudio es determinar con la información disponible el grado de afección que presentan los distintos manantiales que surgen a lo largo de la carretera que une las localidades de Cabornera y Beberino, en el valle del río Casares, uno de los cuales se utiliza como abrevadero de ganado, como consecuencia de las obras de construcción de los túneles de la línea de Alta Velocidad León-Oviedo, así como evaluar las posibilidades de recuperación de los mismos.

Los mencionados manantiales corresponden al drenaje natural de un acuífero constituido en la formación carbonatada Santa Lucía, que se ha visto atravesada en el subsuelo durante la construcción de los túneles. Durante las obras de perforación han tenido lugar algunas entradas de agua, en ocasiones bruscas, ("golpes de agua") induciendo un drenaje artificial de dichos acuiferos. Los golpes de agua se producen al cortar zonas karstificadas en formaciones carbonatadas o zonas muy fracturadas y alteradas en formaciones silíceas.

A estas afluencias bruscas de agua se asocia la desecación de algunos manantiales como los de Cabornera, tras los golpes de agua ocurridos entre los P.P.K.K. $13+471$ y $13+600$ en abril de 2006. Simultáneamente se produjo una reducción paulatina del caudal en los manantiales hasta su total desaparición a principios de mayo de 2006.

Para la realización del presente estudio se ha utilizado información obtenida en campo así como la siguiente documentación facilitada por ADIF:
> Informe final de la campaña de investigación geológica desarrollada en 2004/2005 por túneles de Pajares 1 UTE.
> Cartografía geológica de la galería de acceso al túnel de Pajares. Lote 2. Septiembre 2006.
> Estudio hidrogeológico de la traza de los túneles de Pajares de la línea de Alta Velocidad León-Asturias. Lote I. Julio 2005. EPTISA
> Estudio hidrogeológico del trazado de los túneles de Pajares (lote 2: Folledo-Villadangos) de la línea de Alta Velocidad León-Asturias. Galería de acceso. Abril 2006. EPTISA
> Proyecto Básico. Túneles de Pajares
$>$ Proyecto Constructivo. Lote 1. Anexo 3. Geologia.
> Variante de Pajares. Estudio Geotécnico. Fase A.
> Informe sobre la entrada de agua al túnel de Pajares en el P.K. $11+887$. Enero de 2006. (INECO).
$>$ Informe sobre la afección a un manantial en la localidad de Beberino. Septiembre de 2006. (Túneles de Pajares 1, U.T.E.).
> Informe de seguimiento de las labores de reinyección secundaria en el túnel este (actualizado a 20 de septiembre de 2006). FCC-Acciona infraestructuras.
> Informe de seguimiento de las labores de reinyección secundaria en el túnel oeste (actualizado a 20 de septiembre de 2006). FCC-Acciona infraestructuras.
> Informe sobre la afección a un abrevadero y un manantial situados en la localidad de Cabornera. FCC-Acciona infraestructuras. Septiembre de 2006.

2. MARCO GEOLÓGICO

2.1. Introducción

Desde un punto de vista geológico, la zona de estudio, que corresponde a la zona de influencia de las actividades realizadas en los denominados constructivamente como Lotes 1 y 2 , se incluye dentro de la Unidad de Somiedo-Correcilla. Al Norte de dicha unidad se ubica la Unidad de La SobiaBodón.

La región de Pliegues y Mantos se caracteriza por presentar un estilo deformativo de despegue, lo que origina una traslación de mantos a favor de superficies de bajo ángulo que progresan a lo largo de los materiales más plásticos, normalmente de naturaleza lutítica o pizarrosa. Ello origina un apilamiento de las distintas formaciones, así como el plegamiento de los materiales debidos a distintos mecanismos. Estas estructuras, que presentan una orientación general E-O, y que configuran la estructura geológica principal, se originaron durante la orogenia hercínica, cuyo principal evento deformativo tuvo lugar durante el Carbonifero superior, en el límite WestfalienseEstefaniense. El resultado de esta deformación es la creación de mantos de cabalgamiento con vergencia norte, a favor de superficies de bajo ángulo o rellanos, paralelas a la estratificación y rampas oblicuas a la estratificación que se propagan ascendiendo en las series estratigráficas. Durante la etapa de apilamiento de mantos se originan, además pliegues, tanto por adaptación a las superficies de cabalgamiento como por cizalla. Posteriormente al apilamiento de mantos se produce una etapa de deformación tardihercínica, de edad Estefaniense-Pérmico, que verticaliza las estructuras previas, reaprieta los pliegues hercínicos, llegando en algunos casos a invertir las series. El resultado más visible de este conjunto de estructuras es la repetición y la inversión de las series estratigráficas, así como la creación de desgarres.

Con posterioridad, durante la orogenia alpina, que comienza en el Cretácico superior y culmina en el Mioceno medio, se produce el rejuego de las estructuras hercínicas y tardihercínicas, con un predominio de los desplazamientos verticales, llegando incluso a plegar y reactivar las superficies de cabalgamiento hercínicas. En esta etapa se produce el levantamiento de la Cordillera Cantábrica dando lugar a la morfología actual.

Las formaciones involucradas en la zona de estudio, de edad Paleozoico inferior-Westfaliense, se originaron en medios marinos y transicionales, predominando las litologías lutíticas/pizarrosas, carbonatadas y cuarcíticas/areniscosas silíceas y ferruginosas. En el sector de la cuenca Ciñera-Mantalla al este de Pola de Gordón, afloran sedimentos continentales de tipo fluvio-lacustre de edad Estefaniense.

2.2 Estratigrafía

Aunque en numerosas situaciones la serie se encuentra invertida como consecuencia del plegamiento post-mantos, las formaciones que aparecen en la zona de estudio de acuerdo con un orden cronológico ascendente son las siguientes (figura 1):

1) Formación Láncara

Esta unidad, de edad Cambriano inferior-medio, corresponde a los materiales más antiguos que afloran en el área de estudio. De composición fundamentalmente calcárea - dolomítica, esta formación varia de un punto a otro, presentándose los tres miembros que la componen en el manto de Somiedo-Correcilla, y faltando el término superior de calizas rojas nodulosas en la zona de Cueto Negro (Unidad de Sobia-Bodón). Se distinguen tres miembros:

- Miembro inferior: formado por pizarras de colores oscuros, con niveles areniscosos, constituye el nivel de despegue principal en la unidad de Somiedo-Correcilla, por lo que está casi siempre mecanizado y laminado, y no suele aflorar; cuando to hace, se presenta muy alterado siendo muy difícil la observación de sus características.
- Miembro medio: constituido por dolomias con laminaciones y cavidades, en las que, en ciertas ocasiones, se le superponen calizas grises con moldes lenticulares de cristales de yeso (birdeyes). Es frecuente que los rellenos de calcita de los "birdeyes" no estén presentes, probablemente por disolución, lo que produce un aumento de la porosidad.
- Miembro superior (Caliza Griotte): formado por biomicritas glauconíticas, biomicritas con estromatactis y biomicritas nodulosas rojas. Son rocas de aspecto lajoso, muy bioturbadas, con gran contenido en fauna.

Dado que esta formación constituye el principal nivel de despegue, presenta un espesor variable en la zona, alcanzando potencia máximos en afloramiento de unos 70 m .

Los afloramientos principales se encuentran al Norte de la Unidad de Somiedo Correcilla y en la Unidad de Sobia-Bodón.

2) Formación Oville

En general se trata de una alternancia de pizarras y areniscas constituyendo lo que podría ser un flysch arenisca-pizarra, de edad Cámbrico medio. El espesor varía entre 90 y 370 m , disminuyendo progresivamente hacia el norte y el oeste. Dependiendo del predominio de litologías pizarrosas o arenosas, se distinguen dos tramos:

- Tramo Pizarroso. Se trata del tramo inferior de la formación, con una potencia de unos 120 metros. Está fundamentalmente formado por pizarras con pasadas milimétricas a decimétricas de areniscas. En general el porcentaje de areniscas es inferior al 10%, aumentado a techo hasta un 30%. Las pizarras se van haciendo mas limosas hacia techo a la par que aumenta la homogeneización del sedimento por bioturbación, estando constituidos los metros del transito entre los dos tramos de la Formación Oville por limolitas arenosas intensamente bioturbadas. En la parte baja de la unidad hay dos intercalaciones de areniscas ligeramente glauconíticas que han recibido tradicionalmente en la región el nombre de Areniscas de Simula. El más bajo de estos bancos tiene una potencia de variable entre 1 y 12 m y tiene una base erosiva, situándose en algunos puntos apenas un metro por encima de el techo de la Formación Láncara y en otros puntos a más de 25 m sobre la misma. La potencia del segundo banco también varia entre los 10 y los 20 metros.
- Tramo Areniscoso. Está constituido por unos 170 m de alternancia de capas de areniscas y capas con alternancias decimétricas de areniscas y pizarras. Las areniscas son cuarcitas con glauconita que les confiere un característico color verde, en ocasiones muy acusado. La potencia de las capas de areniscas oscila por lo general entre los 7 y los 15 m , mientras que las capas de alternancias arenisca-pizarra suelen tener potencias próximas a los 2 ó 3 metros y, muy raramente, alcanzan los 5. Hacia el techo de este tramo, en el tránsito hacia la formación Barrios, existe un predominio de areniscas y cuarcitas, sin que apenas se detecten pasadas de pizarras

3) Formación Barrios

Las series distinguidas en esta unidad, de edad Cámbrico superiorOrdovicico, son por lo general muy monótonas y están constituidas por una sucesión de cuarcitas con un espesor promedio de unos 350 m . Se trata de cuarcitas muy puras, que contienen más del 98% de sílice y abundante cemento ferruginoso. Morfológicamente, esta formación es la que da lugar a los resaltes más importantes de la zona, debido a su dureza y destacando además por sus colores característicos que varían desde el blanco hasta el rojizo, ocre e incluso negro provocados por la oxidación del hierro y otros metales pesados.

Las intercalaciones pizarrosas son escasas y casi siempre con potencias inferiores al metro, si bien hacia el techo y el muro de la formación, en el
tránsito hacia las formaciones más pizarrosas, Formigoso y Oville respectivamente, existen tramos pizarrosos de mayor envergadura. Son frecuentes las capas de caolín y la arenización de algunos sectores, relacionado posiblemente con la alteración de la cuarcita en zonas de fractura.

Lutilas areniseas. carbon. Sedimentos contmentales taroihercinicos. Baja permeabilidad en conjunlo

Acuferos carbonatados Callzas y dolomias
Acuileros en rocas detriticas consolidadas Cuarctas y areniscas.

Pizarras y areniscas. Baja oermeabitdad

Figura 1.- Columna hidrogeológica/estratigráfica sintética.

Este último aspecto adquiere gran relevancia desde el punto de vista hidrogeológico ya que implica la existencia de sectores con una alta porosidad eficaz intergranular y por lo tanto elevada permeabilidad, constituyendo en ocasiones acuíferos importantes.

4) Formación Formigoso

Esta formación, de edad Silúrico inferior, con una potencia promedio de 60 a 80 m , ha sido clásicamente subdividida en la Cordillera Cantábrica en un sector inferior puramente pizarroso (Capas del Bernesga), con un espesor de 40 a 50 m y otro superior constituido por una alternancia de pizarras y areniscas (Capas de Villasimpliz), de 20 a 30 m de espesor.

Las pizarras del tramo inferior suelen ser bastante arcillosas y compactas, presentan mayor tamaño de grano hacia el techo simultáneamente al aumento de las pasadas areniscosas. El tránsito hacia la formación San Pedro es gradual y tiene lugar mediante el aumento del tamaño de grano y el espesor de estas intercalaciones.

5) Formación San Pedro

La Formación San Pedro, de edad Silúrico superior, está constituida en este sector por unos 140 m de areniscas cuarcíticas con tonalidades claras, hacia la base (40% de la serie) y areniscas ferruginosas de tonos rojizos, hacia el techo (60% de la serie), con escasas intercalaciones de pizarras arenosas. Las areniscas se presentan en bancos de potencia variable pudiendo llegar a superar los 5 metros. Las intercalaciones pizarrosas son escasas y no suelen superar 1 metro de potencia. Algunos niveles están constituidos mayoritariamente por oolitos ferruginosos, pudiendo el contenido de hierro superar en algunos caso el 80%.
6) Grupo La Vid. Formación Dolomias de Felmín y Calizas de La Pedrosa "La Vid Calcárea".

Esta unidad, de edad Devónico inferior, esta constituida por unos 200 metros de dolomias y calizas dolomíticas grises que hacia techo pasan a calizas fosilíferas. Aparecen intercalados algunos niveles centimétricos de pizarras negras, que han actuado como superficies de despegue internas, lo que dificulta la posibilidad de conocer el espesor real de la serie. En algún banco dolomítico se han identificado venas milimétricas de yeso y algunos nódulos centimétricos de anhidrita.

7) Grupo La Vid. Formación Pizarras de Valporquero "La Vid Pizarrosa"

Esta formación, también de edad Devónico inferior, se dispone estratigráficamente sobre el tramo calcáreo del Grupo La Vid, anteriormente descrito. La unidad comprende unos 200 m de pizarras negras, ocasionalmente fosilíferas, entre las que se intercalan algunos bancos de calizas bioclásticas de
potencia generalmente inferior a los 50 cm . Las intercalaciones de calizas son más abundantes hacia la base, marcando un contacto gradual con las Calizas de La Pedrosa, y hacia el techo en tránsito hacia la formación de calizas Santa Lucía.
8) Formación Santa Lucía

La formación Santa Lucía, de edad Devónico medio-superior, está constituida mayoritariamente por calizas grises con estromatopóridos y frecuentes restos de corales en el tramo medio, aunque en la zona de transición hacia la formación lutitica-arenosa Huergas, puede presentar algunas intercalaciones pizarrosas. La potencia total de la serie varía entre 170 y 280 m .

9) Formación Huergas

Estratigráficamente sobre la formación Santa Lucía se dispone la formación Huergas, de edad Devónico medio, está constituida principalmente por pizarras arenosas con intercalaciones centimétricas a métricas de areniscas cuarcíticas y areniscas ferruginosas. Por lo general, se pueden distinguir:

- Tramo inferior compuesto por pizarras marrones con delgadas intercalaciones areniscosas y niveles de calizas arenosas.
- Tramo medio, con un predominio de areniscas, que suelen ser ferruginosas.
- Tramo superior compuesto principalmente por pizarras con delgadas capas de areniscas pizarrosas y algunos niveles calcáreos que se hacen progresivamente más abundantes hacia el techo de la serie.

Las zonas donde la serie es completa puede alcanzar una potencia total de entre 200 y 300 m .

10) Formación Portilla

La formación Portilla, de edad Devónico medio-superior, se dispone sobre la formación Huergas. Está constituida por calizas bioconstruidas y calizas margosas en facies arrecifales. Se distinguen tres miembros:

- Miembro inferior: Calizas detríticas con desarrollo de cuerpos arrecifales (calizas bioconstruidas) de hasta 50 m de extensión lateral y 5 m de espesor.
- Miembro intermedio: Calizas margosas correspondientes a facies de talud arrecifal. Su espesor varía de 25 a 40 m .
- Miembro superior: calizas detríticas con intercalaciones pizarrosas y areniscosas. Su potencia varía de 15 a 30 m .

El espesor total es de 90 a 120 m . Destaca su expresión morfológica en superficie, especialmente cuando presenta buzamientos elevados, ya que como consecuencia de una mayor resistencia frente a la erosión de los miembros superior e inferior en comparación con las calizas margosas del miembro intermedio, se originan dos marcados farallones.

11) Formación Nocedo

Esta formación, de edad Devónico superior, está compuesta principalmente por arenisca cuarcítica, con intercalaciones calcáreas arrecifales hacia el muro. Aunque la serie tipo descrita al norte de la localidad de Nocedo presenta un espesor de unos 500 m , en el valle del Bernesga su potencia varía entre 35 y 50 m .

12) Formación Ermita

Está constituida por areniscas cuarcíticas de grano fino, con algunas bandas ferruginosas, de edad Devónico superior, y con ella culmina el Devónico. En la zona de estudio la potencia es de unos 20 metros.

13) Formación Alba ("serie Griotte")

Sobre la formación Ermita, anteriormente descrita, se dispone de forma neta el Carbonífero basal, constituido por calizas rojas tableadas y nodulosas, en tránsito gradual hacia techo con la formación Barcaliente. Su potencia suele ser inferior a 30 m .

14) Formación Barcaliente (Caliza de Montaña)

En tránsito gradual sobre la formación Alba, y en contacto neto o gradual bajo la formación Valdeteja, se desarrollan unas calizas micríticas grises oscuras y frecuentemente fétidas, con una potencia de 200 a 350 m . Su edad es Namuriense inferior (Carbonífero superior basal).

15) Formación Valdeteja

Esta formación aflora en la unidad de la Sobia-Bodón, y se dispone bien de forma continua sobre la formación Barcaliente, o bien aparece con geometría lenticular de base plana y techo monticular ("mound"), en el seno de la formación terrígena de San Emiliano. Se trata de calizas claras masivas, con algunos intervalos estratificados e intervalos margosos. Litológicamente, se trata de boundstones de algas, calizas bioclásticas, depósitos de brechas calcáreas, mud mounds. La edad de esta formación abarca el periodo Namuriense medio-superior.
16) Formación San Emiliano

También en la unidad de la Sobia-Bodón, se dispone sobre y lateralmente a la formación Valdeteja, una sucesión terrígena de lutitas, areniscas, margas con intercalaciones calcáreas y capas de carbón, denominada formación San Emiliano, de edad Namuriense medio-Westfaliense inferior. Aunque su espesor es difícil de establecer ya que su techo se encuentra biselado por superficies de cabalgamiento, en la zona de Villanueva de la Tercia supera los 420 m .

El tramo superior de la formación, denominado capas de Villamanín, está formado por calizas masivas con espesores máximos de hasta 250 m , aunque con desarrollo lateral discontinuo, que se acuñan en los materiales terrigenos circundantes (por ejemplo entre las localidades de Villadangos de Arbás y Casares de Arbás).

17) Formación Pastora (Estefaniense)

Se trata de una formación eminentemente terrigena continental, constituida por una sucesión de lutitas, areniscas, capas de carbón y conglomerados fluviales, que presenta una potencia de 85 a 200 m . Corresponde al relleno de una cuenca fluvial-lacustre dispuesta discordantemente sobre paleorrelieves desarrollados en el basamento preestefaniense. La deformación de estos materiales, tuvo lugar probablemente durante el Estefaniense tardio o incluso durante el Pérmico, lo que le confiere a la sedimentación un carácter post-orogénico o tardihercínico.

2.3. Tectónica

Al igual que en otros sectores de la Zona Cantábrica, las estructuras principales son cabalgamientos y pliegues de edad hercínica. En esta zona las deformaciones tardihercínicas y alpinas actúan sobre las estructuras hercínicas previas deformándolas, verticalizándolas e incluso invirtiéndolas, confiriendo a los mencionados cabalgamientos una apariencia de de fallas normales.

Desde un punto de vista estructural, dentro de la Región de Pliegues y Mantos se han descrito dos unidades principales, denominadas Unidad de Somiedo-Correcilla y Unidad de La Sobia-Bodón. La unidad de SomiedoCorrecilla cabalga hacia el norte sobre la formación San Emiliano de la unidad de La Sobia Bodón, a favor de la superficie regional de despegue que se desarrolia a nivel de la formación Láncara en el cabalgamiento de Correcillas, si bien existen otras superficies de despegue de menor rango desarrolladas en el seno de los niveles pizarrosos y margosos existentes en la secuencia estratigráfica.

A menor escala los rasgos estructurales más característicos dentro de cada unidad son el desarrollo de cabalgamientos y pliegues, con dirección principal $\mathrm{E}-\mathrm{O}$, inclinados con vergencia norte, formados durante la orogenia hercínica, que definen distintas escamas cabalgantes. Dentro de la unidad de Somiedo-Correcilla, se distinguen de sur a norte las escamas de Abelgas-

Bregón y Aralla-Rozo limitadas por el cabalgamiento de Bregón, que pasa aproximadamente por el paralelo de Folledo-Buiza. Dentro de cada una de estas escamas se desarrollan cabalgamientos menores y dúplex, produciéndose frecuentes repeticiones de las series.

Con respecto a la unidad de La Sobia-Bodón, en la zona existen tres láminas o escamas alóctonas: Gayo, Bodón y Forcada, con una estructura interna bastante simple, consistente en cabalgamientos con gran desarrollo lateral con rellanos en la formación Láncara y rampas que ascienden en la serie hasta las unidades carboniferas. En esta unidad aparecen asimismo pliegues de dimensiones kilométricas, relacionados tanto con la acomodación de las capas a la geometría de los cabalgamientos (sinclinal de Alba), como al apilamiento de láminas cabalgantes (Antiforme del Cueto Negro) o pliegues de propagación de fallas.

Con respecto a la edad de las deformaciones cabe indicar que la Unidad de Correcillas cabalga sobre una sucesión sinorogénica que alcanza hasta el Westfaliense B, y que la formación Pastora, de edad Estefaniense, aflorante en la cuenca de Ciñera-Mantalla al este de Pola de Gordón, se dispone discordantemente sobre distintas formaciones preestefanienses fosilizando las superficies de cabalgamiento. Por lo tanto, se puede establecer que el emplazamiento de los mantos se desarrolló durante el Westfaliense. No obstante los materiales Estefanienses aparecen deformados, lo que indica que los esfuerzos continuaron hasta el final del Carbonífero y posiblemente durante el Pérmico (etapa tardihercínica). Estos últimos esfuerzos hercínicos, fueron los responsables del reapretamiento de los pliegues relacionados con los cabalgamientos, asi como de la verticalización e inversión de los propios cabalgamientos, lo que posiblemente tuvo lugar de nuevo a lo largo de la orogenia Alpina.

3. MARCO HIDROGEOLÓGICO

3.1. Introducción

Desde un punto de vista hidrogeológico, la zona de estudio se enmarca en el borde septentrional de la cuenca hidrográfica del Duero, en la vertiente sur de la Cordillera Cantábrica, al norte de la provincia de León. Se trata de una zona con relieve montañoso, y cotas que oscilan entre 1.000 y 2.000 m .

Las precipitaciones son abundantes, superándose los 1.000 mm en años medios, con una importante componente nival en los meses de invierno, y temperaturas medias anuales no superiores a los $10^{\circ} \mathrm{C}$. La red de drenaje principal, que en el caso que nos ocupa se enmarca íntegramente en la cuenca del río Bernesga, adquiere una dirección N-S, transversal a las principales estructuras geológicas de dirección E-O. La red secundaria, sin embargo presenta un claro control litológico y estructural, predominando las direcciones E-O.

El estado del conocimiento hidrogeológico de la zona es pobre. De este modo, no existen trabajos previos de investigación hidrogeológica. Los datos disponibles proceden precisamente de los trabajos realizados como consecuencia de la construcción de los túneles de Pajares. A este respecto hay que indicar que aunque se han perforado numerosos sondeos a lo largo de la traza, la mayor parte de ellos tienen una finalidad geotécnica o de reconocimiento geológico, por lo que no se encuentran suficientemente equipados para la obtención de datos hidrogeológicos. Así, los escasos sondeos que disponen de tubería, ésta se encuentra ranurada en toda su longitud, de manera que se comunican los distintos acuiferos existentes y las medidas no son representativas de una formación concreta. La única excepción son los sondeos SB-1, SB-2 y SB-3 que controlan exclusivamente la formación Santa Lucía, al oeste de la localídad de Cabornera.

En la documentación analizada, el cálculo de los parámetros hidráulicos de las distintas formaciones se ha realizado en distintos de los estudios mediante ensayos de permeabilidad tipo Lugeon y Lefranc. La propia metodología de estas técnicas determina que los datos obtenidos sean solo representativos del tramo ensayado, lo que unido al carácter altamente anisótropo de las formaciones implicadas, les confieren un alto grado de incertidumbre. Por el contrario, no se tiene conocimiento de que se hayan realizado ensayos de bombeo en ninguna formación, con los que se habrían obtenido valores más representativos de la totalidad de la columna del sondeo.

3.2. Comportamiento hidrogeológico de las formaciones

De forma muy genérica se puede establecer la existencia de dos tipos de formaciones en cuanto a su comportamiento hidrogeológico: formaciones que constituyen acuiferos y formaciones que se comportan, a efectos prácticos, como acuícludos o acuitardos (figura 1).

En la primera categoría se enmarcan las formaciones carbonatadas (calizas, dolomías) y las detríticas consolidadas (cuarcitas y areniscas). En la segunda categoría se incluyen las formaciones predominantemente pelíticas (pizarras, lutitas).

3.2.1. Formaciones que constituyen acuiferos

Salvo algunas excepciones tanto las formaciones carbonatadas como las detríticas consolidadas presentan una permeabilidad secundaria desarrollada principalmente por fracturación y que se ve aumentada, en el caso de las carbonatadas por fenómenos de karstificación. Además, aunque con menor importancia presentan cierta permeabilidad por porosidad intergranular, siempre condicionada por el grado de compactación y sobre todo de cementación. Por lo tanto, se trata de medios altamente anisótropos y heterogéneos en cuanto a su comportamiento hidráulico, lo que dificulta la extrapolación de los resultados puntuales a la totalidad de la formación.

a) Acuiferos carbonatados

Las formaciones carbonatadas pueden constituir acuiferos importantes desde el punto de vista hidrogeológico. En ellos el funcionamiento hidrogeológico está condicionado por el grado de fracturación, karstificación y posterior relleno (figura 2). Las formaciones susceptibles de constituir acuíferos carbonatados son:

- Láncara
- La Vid calcárea
- Santa Lucía
- Portilla
- Alba
- Barcaliente
- Valdeteja

Figura 2.- Aspecto de la karstificación en la Formación Santa Lucía

Los resultados obtenidos en los ensayos de permeabilidad, recogidos de la documentación previa y sintetizados en el trabajo: "Estudio hidrogeológico del trazado de los túneles de Pajares (lote 2: Folledo-Vidangos) de la línea de Alta Velocidad León-Asturias. Galería de acceso. Abril 2006. EPTISA", muestran por lo general permeabilidades bastante bajas, con órdenes de magnitud que varían desde los $10^{-2} \mathrm{~m} /$ día de la formación Valdeteja a los $10^{-4} \mathrm{~m} /$ día obtenidos en la formación Láncara. Además los valores obtenidos en los distintos estudios son muy dispares en debido a que se aunque se ensayan las mismas
formaciones los sondeos utilizados son distintos. Respecto a estos ensayos cabe destacar los siguientes aspectos:

- Los ensayos de permeabilidad que se realizaron corresponden a ensayos tipo Lugeon o Lefranc
- Las profundidades alcanzadas en general son menores de 200 m , por lo que no se alcanza la rasante del túnel
- El número de ensayos es variable para cada formación, lo que compromete la representatividad de las medidas obtenidas.

Se realizaron ensayos Lugeon en calizas de Láncara en sondeo SEI-2 hasta $228,5 \mathrm{~m}$ de profundidad, obteniéndose valores de permeabilidad en un rango de 1 a $4 \times 10^{-7}(\mathrm{~m} / \mathrm{s})$. En las tablas 1 y 2 se reflejan los valores de permeabilidad asignados a cada formación como resultado de los ensayos realizados ordenados de mayor a menor permeabilidad correspondientes al Estudio Geotécnico (2002) y al Proyecto y Obra: Túneles de Pajares. Lote 1

Tabla 1. Valores de permeabilidad recogidos en el Informe: "Variante de Pajares. Estudio Geotécnico. Fase A (2002)"

	m / s	m / d
Barrios (areniscas)	8.1×10^{-1}	7×10^{-2}
Oville (areniscas)	4.2×10^{-7}	3.6×10^{-2}
Valdeteja (calizas)	3.4×10^{-1}	2.9×10^{-2}
Huergas (pizarras)	1.3×10^{-1}	1.1×10^{-2}
Portilla (calizas)	9.4×10^{-8}	8.1×10^{-3}
Subhullero (pizarras)	7.9×10^{-8}	6.8×10^{-3}
Barcaliente (calizas)	7.3×10^{-8}	6.3×10^{-3}
Subhullero (areniscas)	5.7×10^{-8}	4.9×10^{-3}
San Emiliano (pizarras)	5.1×10^{-8}	4.4×10^{-3}
Formigoso (pizarras)	4.2×10^{-8}	3.6×10^{-3}
San Pedro (areniscas)	3.8×10^{-8}	3.3×10^{-3}
La Vid (calizas)	3.4×10^{-8}	2.9×10^{-3}
Oville (pizarras)	1.8×10^{-8}	1.5×10^{-3}
Láncara (calizas)	8×10^{-9}	6.9×10^{-4}
San Pedro (pizarras)	6×10^{-9}	5.2×10^{-4}
Herrería (areniscas)	4×10^{-9}	3.4×10^{-4}

Tabla 2. Valores de permeabilidad recogidos en el "Proyecto y Obra: Túneles de Pajares. Lote 1"

	m / d
La vid Calcárea	$3,5 \times 10^{-2}$
Alba	$2,69 \times 10^{-2}$
Oville (areniscas y pizarras)	$2,47 \times 10^{-2}$
Barrios	$2,25 \times 10^{-2}$
San Emiliano	$2,10 \times 10^{-2}$
Huergas	$1,90 \times 10^{-2}$
Pastora	$1,81 \times 10^{-2}$

Portilla	$1,13 \times 10^{-2}$
Barcaliente	$8,47 \times 10^{-3}$
Formigoso	$3,63 \times 10^{-3}$
La Vid Pizarroso	$1,73 \times 10^{-3}$
Oville (conglomerado)	$1,30 \times 10^{-3}$
Láncara Superior	$7,78 \times 10^{-4}$
San Pedro (areniscas rojas)	$7,78 \times 10^{-4}$
San pedro \{areniscas rojas y pizarras)	$6,91 \times 10^{-4}$
Láncara Inferior	$5,18 \times 10^{-4}$
San Pedro (areniscas y cuarcitas)	$5,18 \times 10^{-4}$

Los valores bajos de permeabilidad de las formaciones carbonatadas contrastan además con el inventario de puntos de agua y las observaciones de campo realizadas, ya que se ha podido constatar que manantiales bastante caudalosos, están asociados a estas formaciones. Así, el manantial utilizado para el abastecimiento a la población de Beberino surge en la formación La Vid calcárea (caudal $\sim 2 \mathrm{~L} / \mathrm{s}$) en las proximidades al contacto con la Formación San Pedro; los manantiales de la zona de Carbornera (Fuente de la Fontanilla y manantial de la Vega la Cubilla), se asocian a la formación Santa Lucía brotando en el contacto con la formación Huergas; y en la formación Portilla aparece la Fuente Vieja de Beberino.

Por lo tanto en casi todas las formaciones carbonatadas aparecen descargas relativamente importantes.

Un rasgo muy característico de las aguas subterráneas procedentes de acuíferos carbonatados es que presentan valores de conductividad eléctrica relativamente altos (> $250 \mu \mathrm{~S} / \mathrm{cm}$), en comparación con aquellas procedentes de acuíferos cuarcíticos, cuyos valores son, en general, menores de 75 $\mu \mathrm{S} / \mathrm{cm}$.
b) Acuiferos desarrollados en formaciones detriticas consolidadas

Se trata de aquellos acuiferos formados principalmente por cuarcitas y areniscas, y en concreto los asociados a las formaciones:

- Barrios
- San Pedro
- Nocedo
- Ermita

Se trata de formaciones con alto grado de consolidación/cementación que presentan una porosidad eficaz secundaria, desarrollada por fracturación. No obstante, en la Formación Barrios, asociado a las zonas de fractura, se desarrollan sectores alterados o arenizados altamente permeables (figura 3), comportándose desde el punto de vista hidrogeológico como materiales detríticos no consolidados con elevada porosidad eficaz intergranular. Estas
zonas tienen mucha importancia hidrogeológica ya que pueden constituir acuíferos significativos.

Al igual que en el caso de las formaciones carbonatadas, se obtuvieron datos de permeabilidad mediante ensayos Lugeon y Lefranc, aunque en este caso se realizaron tanto en roca sana como en zonas de fractura. Sólo se han realizado ensayos de bombeo (interpretación mediante el método de Jacob acuíferos confinados en régimen variable, en recuperación), en los sondeos SR-9 y SR-90. Se caracterizaron únicamente las formaciones Barrios y las areniscas ferruginosas de San Pedro, obteniéndose para la formación Barrios valores de permeabilidad de $2,25 \times 10^{-2} \mathrm{~m} /$ dia, como media, y de $2,20 \times 10^{-1} \mathrm{~m} / \mathrm{dia}$ en zonas de fractura y para la formación San Pedro, $5,2 \times 10^{-4} \mathrm{~m} / \mathrm{dia}$ como promedio y $1,1 \mathrm{~m} /$ día en zona de fractura.

Por lo general, dentro de la reserva con la que hay que considerar los datos de los ensayos puntuales de permeabilidad, destaca la elevada permeabilidad existente en las zonas de fractura ensayadas, sobre todo los obtenidos en la formación San Pedro, así como la relativamente elevada permeabilidad promedio de la formación Barrios.

Fiqura 3.- Aspecto de la Formación Barrios arenizada en el entorno de una fractura
Los manantiales conocidos en relación con estas formaciones son los de la Braña y la Reguera de la Aguja, que aparecen en una zona fuertemente fracturada mediante fallas de desgarre de dirección ENE-OSO en la formación Barrios, ambos se utilizan para el abastecimiento a la población Poladura de la Tercia y presentan un caudal del orden de $1 \mathrm{~L} / \mathrm{s}$.

Una característica distintiva de estas aguas es que los valores de la conductividad eléctrica es inferior a $75 \mu \mathrm{~S} / \mathrm{cm}$.

3.2.2. Formaciones que no constituyen acuíferos

El resto de las formaciones presentes, compuestas principalmente por pizarras con intercalaciones de distinta entidad de areniscas y calizas, constituyen acuicludos o acuitardos. Aunque en algunas formaciones de esta naturaleza, como Oville, los niveles areniscosos de pueden presentar considerable potencia, al encontrarse limitados a muro y techo por pizarras su recarga se ve dificultada y no suelen albergar agua.

Estos materiales presentan, a efectos prácticos, un comportamiento prácticamente impermeable constituyendo los niveles de base de los distintos acuiferos (figura 4). Las formaciones incluidas en este conjunto son:

- Oville
- Formigoso
- Huergas
- San Emiliano

La distribución de los acuíferos y el funcionamiento hidrogeológico de los mismos está condicionada por las características de las sucesiones estratigráficas, la estructura geológica regional y las microestructuras.

En este sector de la región de Pliegues y Mantos de la Cordillera Cantábrica, desde un punto de vista hidrogeológico, están presentes un conjunto de acuíferos de naturaleza carbonatada o silícea, limitados a muro y techo por formaciones pelíticas de baja permeabilidad, pudiendo aparecer duplicados en profundidad por el efecto de los planos de cabalgamiento. Esta zona, por lo tanto, se caracteriza por la presencia de un sistema de acuiferos más o menor aislados, cada uno de los cuales se dispone ocupando bandas de dirección E-O, de acuerdo con la estructura regional.

Aunque no se dispone de suficientes datos piezométricos para poder definir con precisión el funcionamiento del flujo subterráneo, la observación de los puntos de drenaje, unido a la geometría de los acuíferos permite hacer un bosquejo del funcionamiento hidrodinámico regional.

La recarga de los acuíferos carbonatados tiene lugar a través de las precipitaciones mayoritariamente y probablemente, el flujo principal de dirección ONO-ESE, tenga lugar de las zonas cumbres hacia las zonas de drenaje correspondientes a los niveles de base marcados por los arroyos principales que disectan perpendicularmente la estructura regional, como el arroyo de Folledo o el arroyo de Casares en la zona de Beberino (carácter efluente).

Figura 4.- Contacto entre la formaciones Huergas y Santa Lucia, en las proximidades de Cabornera

3.3. Hidrogeología regional

Las descargas producidas a través de los manantiales identificados, están relacionadas habitualmente con contactos litológicos entre las formaciones carbonatadas que constituyen acuíferos y las formaciones pizarrosas impermeables, o en contactos entre formaciones carbonatadas y materiales cuarcíticos que se comportan como medios de baja permeabilidad cuando no se encuentran fracturados o alterados. En este grupo se incluyen los manantiales de abastecimiento a Beberino (contacto entre la formaciones La Vid Calcárea y San Pedro), la Fuente Vieja de Beberino (contacto entre las formaciones Portilla y Huergas), los manantiales de Cabornera (contacto entre Sta. Lucía y Huergas) y el manantial El Gravien, utilizado para abastecimiento a Villadangos (contacto entre Láncara y Oville).

Existen sin embargo otros manantiales relacionados exclusivamente con formaciones detríticas consolidadas, principalmente con las formaciones Barrios y San Pedro. En este caso, la presencia de los manantiales está
relacionada con zonas de fracturación intensa, normalmente de tipo alpino. Este es el caso del manantial del Gorgollo (abastecimiento a la población de Folledo), de los manantiales de la Braña y la Aguja (abastecimiento a la población de Poladura de la Tercia), y de los manantiales de La Canalina y San Antón (abastecimiento a Rodiezmo).

4. INCIDENCIAS DE ÍNDOLE HIDROGEOLÓGICO DURANTE LA PERFORACIÓN DE LOS TÚNELES

La situación de la traza de los de Túneles de Pajares de la Línea de Alta Velocidad León-Asturias correspondientes al denominado Lote 1 se muestra en la figura 5 . Durante la etapa de construcción de los túneles se atraviesan las formaciones acuíferas por lo que es probable que se produzcan afecciones de diversa cuantía a los acuíferos del entorno. Estas afecciones son apreciables en los manantiales de descarga de los mismos, en los que pueden producir disminuciones de caudal llegando incluso su la desaparición temporal (figuras 5 y 6).

De acuerdo con la información disponible, durante las obras ejecución de los túneles se produjeron los siguientes golpes de agua (Tabla 3):

Tabla 3. Principales incidencias de indole hidrogeológico hasta julio de 2006

Túnel Oeste

	Fecha	Evento	P.K.	Geologia
1	24/11/05	golpe de agua, $\mathrm{Q}: 50.000 \mathrm{~m}^{3}$ y caudal remanente $>10 \mathrm{~L} / \mathrm{s}$	$11+887$	contacto Formaciones Barcaliente - Alba
2		cueva	$11+957,5$	Formación Ermita, calcoarenitas
3	16/1/06 a 25/01/06	agua+lodo	$\begin{gathered} 12+170,5 \mathrm{a} \\ 12+173 \end{gathered}$	Formación Portilla, calizas
4	30101/06	pequeñas entradas de agua + presencia karstificaciones	hasta 12+190	
5	8/02/06	comienza entrada agua + golpe de agua	12+226	
		cavidad kárstica	$12+236$	
6	2/03/06	pequeño golpe de agua	$12+764,7$	
7	6/03/06	golpe de agua	$12+805$	Formación Portilla (mayor entrada - zoná de falla)
8	19/03/06	entrada de agua		Zona ya ejecutada (Formación Portilla, calizas)
9	6/04/06	brusca entrada de agua	$13+471$	Formación Santa Lucia, calizas
10	7al $20 / 04 / 06$	entradas menores de agua		Formación Santa Lucia, calizas
11	22/05/06	entrada de agua	$13+958$	La Vid Calcarea
13	04/06/06	entrada de agua	$14+976$	Probable falla La Vid Calcárea San Pedro
14	13/07/06	entrada de agua	15+122 a 245	Falla San Pedro
15		entrada de agua	$15+300$ a 410	

Túnel Este

	Fecha	Evento	p.k.	Geología
1	13/02/06		$11+926$	Falla Ermita
2	24/02/06		$12+095$	Portilla calizas y areniscas karsificadas
3	27/02/06		$12+151$ a 157	
4	20/04/06	golpe de agua + lodo	$13+444$	Santa Lucia (relación con golpe $\mathrm{n}^{\circ} 10$ de túnel oeste por falla E-O)
5	27/04/06	entrada de algo de agua	$13+505$	Santa Lucia
6	17/05/06	entrada de agua	13+904 a 917	La Vid Calcárea
7	22/06/06	entrada de agua	14+896 a 928	La Vid Calcárea
8	4/07/06		15+058 a 167	Falla en Formación San Pedro
9	25/07/06		$15+282$ a 332	

En relación con algunas de estas incidencias se han visto afectados los manantiales objeto de estudio.

Figura 5.- Situación de los manantiales de Cabomera

De acuerdo con la información extraída del informe de la Constructora sobre la afección a los manantiales de Cabornera, facilitados por la Asistencia Técnica, a principios de junio de 2006, la Junta Vecinal de la localidad de Cabornera comunicó a la Dirección del la Obra que el abrevadero para ganado, se habia secado. Sin embargo, por las conversaciones con los vecinos de la localidad quedó constancia de que la fuente ya estaba seca el día 2 de mayo de 2006.

El día 19 de abril de 2006, en la Tuneladora Este se detectó durante la excavación del anillo 2450, en los materiales carbonatados de la formación Santa Lucia, (P.K 13+442 aproximadamente) un aporte anormalmente alto de agua y lodo. Esta avenida se mantuvo hasta el día 20 de abril. El día 21 de abril, una vez que se reanudó la excavación, volvió a producirse otra avenida de agua, barro y lodo. Desde el día 22 de abril al 27 de abril lo excavación prosiguió a un ritmo inferior al normal dado que se trabajaba con grandes caudales de agua con barro en el frente.

La Tuneladora Oeste también sufrió una avenida de agua, arena y barro, el día 6 de abril, también durante la excavación de las calizas de la formación Santa Lucía (P.K 13+470 aproximadamente). En los días siguientes, 7,8 y 11 de abril se produjeron nuevos golpes de agua, barro y arena, permaneciendo la máquina detenida hasta el día 26 de abril para efectuar labores de limpieza y desagüe.

La relación temporal existente entre los eventos de afluencia brusca de agua a los túneles al atravesar la formación Santa Lucía y el secado de los manantiales, desarrollados en el contacto entre la propia formación Santa Lucía y la formación pizarrosa de baja permeabilidad Huergas, hace prever una relación directa entre ambos hechos.

Figura 6.- Corte general (Proyecto y Obra de plataforma de la linea de alta velocidad León-Asturias. Tramo Túneles de Pajares (Lote 1). UTE. Pajares Lote 1) con la ubicación de los principales los golpes de agua y proyección de los manantiales estudiados

5. MANANTIALES DE LA ZONA DE CABORNERA

5.1. Descripción

En el entorno de la localidad de Cabornera, localidad perteneciente a Pola de Gordón, se ubican los manantiales objeto de este informe.

A la localidad de Cabornera se accede desde Pola de Gordón, por ia N-630, aproximadamente en el P.K. 111 se toma el desvío a la carretera LE-473 y dicha localidad se encuentra a unos $3,5 \mathrm{Km}$ (figura 5).

En la margen derecha de la mencionada carretera (LE-473), poco antes de llegar a dicha localidad se encuentran en primer lugar, los manantiales de la Vega de Cubilla (figuras 5 y 10), a una cota aproximada de 1.055 m s.n.m., hoy en día secos. Unas decenas de metros más al oeste se localiza un manantial denominado el Abrevadero, también seco aunque actualmente surge algo de agua en una cueva adyacente. Por último a escasa distancia se ubica el manantial más importante denominado Fuente de La Fontanilla, también con a una cota aproximada de 1.055 m s.n.m., que en la fecha del presente estudio tiene abundante caudal, aunque permaneció totalmente seco entre mayo y octubre de 2006 (figura 7).

Figura 7.- Fuente de la Fontanilla. Izquierda: julio 2006. Derecha: octubre 2006

El manantial del abrevadero (figura 8) corresponde a una pequeña captación que da servicio a un abrevadero, con unas dimensiones aproximadas de 2 m de largo por $0,5 \mathrm{~m}$ de ancho, con un caño central, que permaneció totalmente seco durante el periodo de control por el IGME. Justo detrás de dicho abrevadero se localiza un manantial que surge en una cueva desarrollada en la misma formación calcárea. Este pequeño manantial estuvo seco desde los meses de mayo-junio de 2006 hasta octubre de 2006. En la visita del 30 del mes de octubre surgía un caudal del orden de 0,2-0,5 L/s (figura 9).

Figura 8.- Manantial del Abrevadero en la zona de Cabornera.

Los manantiales de la Vega de la Cubilla (figura 10), según se desprende de la información recopilada de los habitantes de la zona, son surgencias de caudal variable y estacional que solían presentar caudales abundantes en épocas de lluvias y escasos en estiajes. Durante todo el periodo de control permanecieron secos.

Figura 9.- Aspecto de la pequeña cueva situada detrás del abrevadero en octubre de 2006

Figura 10.- Aspecto de la formación Santa Lucia karstificada en la carretera a Cabornera. En este tramo se localizaron múliples surgencias en época de Iluvias

5.2. Parámetros medidos

El IGME comenzó a controlar los manantiales a principios del mes de julio de 2006, realizándose una serie de visitas de campo con el objetivo de estudiar la evolución del manantial en el tiempo. Cuando las condiciones fueron favorables, por aparición de agua en los manantiales, se midieron los parámetros: caudal, conductividad eléctrica del agua, temperatura y pH . Para las medidas del pH y de la conductividad eléctrica del agua se empleó un conductivímetro-phímetro de la marca Cybescan y la temperatura se midió con un termómetro de la marca Digi-thermo.

En la tabla 4 se muestran los datos recopilados procedentes de la documentación previa así como los recogidos en las sucesivas visitas realizadas.

Tabla 4. Manantiales de Cabornera

Técnico	Fecha	Caudal (Ls)		pH		C. E. $(\mu \mathrm{S} / \mathrm{cm})$		$\left.\mathrm{T}^{\mathrm{a}}{ }^{\circ} \mathrm{C}\right)$	
		M. Fontanilla	Cueva						
Eptisa	29/11/2004	-	-	-	-	-	-	-	-
IGME	3/10/2006	1-1.5	seco	7,8	-	346	-	12,8	-
IGME	30/10/2006	25-30	0,3	6,7	6.3	298	295	12,3	12,2

5.3. Aspectos hidrogeológicos de los manantiales

Los manantiales estudiados corresponden a descargas naturales del acuífero constituido en la formación calcárea Santa Lucía que está constituida mayoritariamente por calizas grises con estromatopóridos y frecuentes restos de corales en el tramo medio, aunque en la zona de transición hacia la formación lutítica-arenosa Huergas, puede presentar algunas intercalaciones pizarrosas.

Las rocas calizas, en principio son muy poco permeables o casi impermeables pero como consecuencia de los procesos orogénicos se producen fracturas y además debido a su origen sedimentario suelen presentar planos de estratificación. Estas discontinuidades constituyen planos de debilidad que fraccionan la roca en bloques a partir de los cuales se inicia la disolución de la roca.

El carbonato cálcico, CaCO_{3}, constituyente fundamental de las calizas, es muy poco soluble en agua pura, casi se podría decir que es insoluble. Pero el agua químicamente pura no existe en la naturaleza, y una de las sustancias que aparecen disueltas en el agua es el CO_{2} (anhídrido carbónico, o dióxido de carbono). Cuando este gas se disuelve en el agua, parte de él se combina químicamente con ésta, de forma reversible, produciendo ácido carbónico, el ácido carbónico, a su vez, reacciona con el carbonato cálcico, también de forma reversible, produciendo bicarbonato cálcico, esta última sustancia es relativamente soluble en agua, y bastante inestable.

Las condiciones ambientales en superficie y en profundidad (temperatura, presión parcial de CO_{2}, etc.) hacen que dicho equilibrio químico se desplace en una u otra dirección, produciéndose la disolución, o deposición de CaCO_{3}. Estos
procesos de disolución van a tener lugar fundamentalmente en las discontinuidades, tendiendo a ensancharlas, y dando origen a una serie de formas típicas de los paisajes kársticos, que englobamos bajo el término exokarst.

El desarrollo de los manantiales estudiados está relacionado con el contacto entre las formaciones Santa Lucía y Huergas, (mapa 1 y corte 1 del anexo), la primera de carácter carbonatado y fuertemente karstificada, presentando alta permeabilidad, y la segunda de carácter eminentemente pizarroso y de baja permeabilidad. Los valores de conductividad eléctrica medidos en octubre de 2006 , en torno a 300-350 $\mu \mathrm{S} / \mathrm{cm}$, son ligeramente inferiores a los valores obtenidos en los sondeos SB que atraviesan íntegramente la formación carbonatada Santa Lucía, donde se obtuvieron valores entre 412 y $460 \mu \mathrm{~S} / \mathrm{cm}$ en la misma fecha. Estos valores, obtenidos tras la resurgencia de los manantiales de Fontanilla y la cueva del Abrevadero en octubre de 2006, indican a su vez que no se trata de aguas recientes procedentes exclusivamente de la recarga por los episodios de lluvia de octubre, y que en tal caso habrían dado valores mucho más bajos, sino que se trata de aguas con un tiempo de residencia más alto pertenecientes al sistema kárstico, quizás con algo de mezcla de aguas de circulación rápida. La descarga visible más importante de este acuífero kárstico en esta zona es la Fuente de la Fontanilla, que tiene lugar en el contacto de dicha formación con la formación Huergas y posiblemente en relación con una fractura alpina de dirección NO-SE (mapa 1 del anexo).

De acuerdo con los datos de campo obtenidos, el flujo subterráneo se establece posiblemente de ONO a ESE, de forma subparalela a la dirección de la formación Santa Lucía y hacia el arroyo de Folledo, que disecta la formación perpendicularmente al este de los sondeos SB. La presencia de fracturas alpinas de dirección NE-SO y NO-SE favorece la descarga a través de los manantiales estudiados e incluso pueden dar lugar a inflexiones importantes en el flujo regional (mapa 1 del anexo).

5.4 Afección y recuperación de los manantiales

Durante la construcción de los túneles tuvieron lugar una serie de incidencias de índole hidrogeológico, como las entradas de altos caudales de agua conocidos como "golpes de agua" que fueron indicadas en el apartado 4 de este estudio. Sin embargo las que tienen incidencia en la evolución de los caudales en los manantiales de Cabornera son aquellas que tuvieron lugar al atravesar la formación Santa Lucía, y que se indican en la (tabla 5):

Tabla 5. Principales golpes de agua relacionados con la perforación de la formación Santa Lucia

Fecha	pK	Fecha	$p K$
Túnel oeste		Túnel Este	
6/04/06 (brusca entrada de agua)	$13+471$	20/04/06 (golpe de agua + lodo)	$13+444$
7 al 20/04/06 (golpes de menor importancia)		27/04/06 (entrada de algo de agua)	$13+505$

Por lo tanto, a partir de abril de 2006, el drenaje de la formación que se producía a través de los manantiales de la zona de Cabornera, se realiza también a
través de los túneles situados a una cota de 940 m s.n.m. y a una profundidad media de 162 m . El drenaje a cota inferior provocó un descenso en el nivel piezométrico del acuífero y como consecuencia el secado de los manantiales desde mayo-junio de 2006 hasta septiembre de 2006. Estas dos situaciones, en régimen natural y en régimen influenciado por el drenaje a través de los túneles, se han plasmado en el corte hidrogeológico 1 del anexo. La primera surgencia que se secó, en el mes de mayo de 2006, fue la del abrevadero y sobre mediados de junio de 2006 la de la Fuente de la Fontanilla.

Las fuertes lluvias de principios de octubre recargaron el acuífero haciendo subir el nivel piezométrico y la resurgencia de los manantiales. Así, el 3 de octubre de 2006 la fuente de la Fontanilla presentaba un caudal de $1 \mathrm{l} / \mathrm{s}$, aproximadamente, mientras que el resto seguían secos, a excepción de un hilo de agua en una de las surgencias de la zona de la Cubilla.

De la información verbal proporcionada por la Junta Vecinal de Cabornera se desprende que la Fuente de la Fontanilla ($n^{\circ} 25$ del informe de Eptisa), en años anteriores, presentaba en estiaje un caudal de unos $8 \mathrm{~L} / \mathrm{s}$. El abrevadero (Manantial de la Vega de la Cubilla, $n^{\circ} 26$ del informe de Eptisa) y los manantiales de la zona de la Cubilla mermaban bastante, no llegando nunca a desaparecer.

En el entorno de los manantiales de Cabornera, dentro de la formación Santa Lucía, se controlan los niveles piezométricos en los sondeos SB1, SB2 y SB3, desde el día 13 de julio de 2006. En la tabla 6 figuran, entre otros, los datos referentes a su situación y profundidad.

La información que se ha obtenido del "Informe final de la campaña de investigación geológica desarrollada e 2004/2005 por túneles de Pajares 1 UTE. TOMO IV" referente a las columnas litológicas de los sondeos SB1, SB2 y SB3 se muestra en la tabla 7.

Tabla 6.- Caracteristicas de los sondeos hidrogeológicos SB

Nombre	SB1	SB2	SB3
Naturaleza	Sondeo	Sondeo	Sondeo
Inclinación	Vertical	Vertical	Vertical
Cota (m)	1107	1117	1117
Profundidad (m)	176,6	161,45	161,7
Cota fondo (m)	930,4	955,55	955,3
P.K. (túneles)	13.410 (túnel O)	13.350 (túnel E)	13.400 (entre túneles)

Tabla 7.- Columnas litológicas resumidas de los sondeos SB

SONDEO	PROFUNDIDAD	LITOLOGİA
SB-1	$\begin{array}{ll} \hline 0 & -0,60 \\ 0,60-39,20 \\ 39,20-39,80 \\ 39,80-176,60 \end{array}$	Suelo Fm. Santa Lucía; caliza bioclástica y niveles pizarrosos Fractura Fm. Santa Lucía; zonas karstificadas entre los m 70 y 70,60
SB-2	$\begin{aligned} & 0-4,50 \\ & 4,50-6,30 \\ & 6,30-161,45 \end{aligned}$	suelo Fm. Santa Lucía; caliza bioclástica y niveles pizarrosos Fm. Santa Lucía; calizas muy karstificadas. A partir del m 152 presencia de niveles pizarrosos. Incidencias más relevantes descritas: entre los m 18,5 y 25 pérdida de lodos; entre los m 45 y 134,5 pérdida de lodos (30\%).
SB-3	$0-161,70$	Fm. Santa Lucía; calizas muy karstificadas y niveles pizarrosas a partir del m 135. Entre m 138 y 138,20 calcita. Incidencias más relevantes descritas: a partir m 17 pérdida de lodos.

Los datos correspondientes a los niveles piezométricos medidos durante la perforación de los sondeos ("Informe final de la campaña de investigación geológica desarrollada e 2004/2005 por túneles de Pajares 1 UTE. TOMO IV") y durante el periodo de control del IGME, figuran en la tabla 8 y la representación gráfica de los mismos se muestra en la figura 11.

Tabla 8.- Evolución de la cota del nivel plezométrico (m.s.n.m.) en los sondeos hidrogeológicos SB.

FECHA	SB1	SB2	SB3	Observaciones
24/11/2004		1090,7		Datos del constructor
15/12/2004	1090,5			"
20/12/2004			1083,6	,
13/07/2006	1083,33	1045,6	1024,81	Control IGME
20/07/2006	1079,28	1044,75	1021,58	"
27/07/2006	1078,79	1043,8	1019,3	"
08/08/2006	1078,19	1041,6	1018,47	,
18/08/2006	1085	1039,73	1017,85	Control IGME. Lluvias abundantes dias 17 y 18/08/2006
31/08/2006	1077, 1	1037,93	1016,65	Control IGME
11/09/2006	1076,13	1036,15	1015,27	"
18/09/2006	1076,04	1034,61	1011,30	"
03/10/2006	1093,49	1077,57	1072,99	Control IGME. Lluvias muy abundantes día 02/10/2006

Los datos disponibles referentes a la evolución del nivel piezométrico con respecto a la situación de partida previa a las obras del túnel (finales de 2004), se muestran en la tabla 9 , junto con datos relativos a los descensos máximos y la última recuperación de octubre de 2006:

Tabla 9.- Situación del nivel piezométrico relacionado con la situación de partida de final de 2004

SITUACIONES	SONDEOS		
	SB1	SB2	SB3
SITUACIÓN INICIAL CONOCIDA (datos constructor en m s.n.m.)	1090,70	1090,50	1083,60
MAXIMO DESCENSO (m)	14,46	56,09	72,30
VELOCIDAD DE DESCENSO (cm/día)	11	16	20
POSICIÓN RELATIVA A LA INICIAL (m)	2,99	$-13,13$	$-10,61$
RECUPERACIÓN TRAS LAS LLUVIAS DE OCTUBRE (m)	17,45	42,96	61,69

En la interpretación de los datos se pueden considerar dos periodos: uno de descenso, hasta la medida del 18/09/2006, y otro de ascenso, entre dicha fecha y el 3/10/2006.

De ello lo que se desprende que la velocidad de descenso calculada para este periodo es del orden de 11,16 y $20 \mathrm{~cm} / \mathrm{día}$, en los sondeos SB1, SB2 y SB3, respectivamente.

Durante el segundo periodo tiene lugar un ascenso de los niveles piezométricos en los tres sondeos controlados, entre las fechas 18/09/2006 y 03/10/2006.

Figura 11. - Evolución de los niveles piezométricos en los sondeos SB. El dato referente a la situación inicial procede de la información previa disponible.

Los materiales calcáreos de la formación Santa Lucia constituyen un acuifero calcáreo con permeabilidad por fisuración y karstificación. Una de las características de este tipo de acuíferos es la heterogeneidad y anisotropia de sus propiedades pudiendo ser esta la causa de las diferencias observadas en el comportamiento de los niveles en los tres sondeos. Podría suceder que la permeabilidad en el sondeo SB1 sea más baja y por lo tanto, la respuesta a los cambios hidrodinámicos del acuifero más lenta.

Las surgencias situadas en la carretera Beberino-Cabornera se corresponden a puntos de descarga natural del acuífero. Los sondeos SB1, SB2 y SB3 permiten la observación del nivel piezométrico de dicho acuífero, ya que están perforados enteramente en dicha formación (mapa 1 y corte1 del anexo).

En abril de 2006, durante la realización del túnel oeste, al atravesar la formación Santa Lucía, tuvieron lugar entradas de agua que provocaron su drenaje a cota de los túneles y como consecuencia un descenso de los niveles piezométricos del acuifero que motivó el secado de los manantiales ya que en esta nueva situación no se produce la intersección de la superficie piezométrica con la superficie topográfica (corte 1 del anexo). Además se debe añadir el descenso periódico estacional de la superficie piezométrica del acuifero debido a la disminución de precipitaciones en la época de estiaje (figura 12). Aunque la escasez de precipitaciones en época estival se repite anualmente, el secado de los manantiales es un hecho insólito.

El volumen de las precipitaciones que tuvieron lugar a principios de octubre fue, sin duda, mayor que el volumen de agua que pueda estar descargándose a través del túnel, produciéndose la recarga del acuífero, un ascenso de la superficie piezométrica y la "resurgencia" de los manantiales.

Figura 13.- Datos de precipitación mensual durante el periodo enero 2000 - septiembre 2006

A principios de octubre de 2006 tuvo lugar un intenso episodio de lluvias y en consecuencia un incremento de la recarga del acuífero con el correspondiente ascenso de la superficie pizométrica (tabla 9 y figura 12), que ha hecho "resurgir" los manantiales. Sin embargo es muy probable que desde esta fecha la descarga a través de los túneles también se haya incrementado, hecho que se desconoce por no disponer de datos de salida de agua por los mismos.

De acuerdo con los informes de seguimiento de las labores de reinyección secundaria en los túneles este y oeste (actualizados a 20 de septiembre de 2006), redactados por FCC-Acciona infraestructuras, y facilitados por la Asistencia Técnica, hasta la mencionada fecha de 20 de septiembre no se han realizado labores específicas de inyección de espumas hidrófobas ni de inyección de lechada de cemento a lo largo del tramo afectado de la formación Santa Lucía ni en el túnel este ni en el oeste. Actualmente se desconoce el volumen de afluencia de agua a través de la formación Santa Lucia a los túneles.

5.5. Recomendaciones

Una vez que se ha observado la recuperación de la Fuente de la Fontanilla y del manantial de la Cueva del Abrevadero en época de lluvias, se pueden hacer recomendaciones encaminadas al conocimiento de la evolución de las descargas del acuífero por el drenaje de los manantiales y de los túneles. Con el control de estas dos descargas de agua se puede determinar si la afección a los manantiales ha sido transitoria o bien permanente en cuyo caso habria que efectuar estudios especiales en busca de soluciones específicas.

Cabe pues hacer dos tipos de recomendaciones, unas sobre los manantiales y otras sobre los túneles:
a) Realización de un programa de seguimiento de la evolución del caudal mediante la medida mensual del mismo, al menos, durante un año hidrológico completo, que permita establecer una relación significativa entre volumen de precipitación y caudal drenado. Las condiciones hidrodinámicas que presente cada manantial en la situación más desfavorable (periodo de estiaje) serán indicativas del comportamiento futuro del manantial y su análisis permitirá establecer la necesidad, o no, de abordar trabajos. Al mismo tiempo se considera recomendable acompañar la medida del caudal con la de los parámetros: pH , temperatura y conductividad eléctrica del agua.
b) Al mismo tiempo que se efectúa el seguimiento de la evolución del manantial, se debe completar el conocimiento con la evolución de surgencias en los túneles. Esto se encamina a conocer con precisión los tramos que han atravesado la formación Santa Lucia, el caudal que drena por ellos y la situación de las labores realizadas en el túnel y su trasdós para la impermeabilización.

6.- CONSIDERACIONES GENERALES: CONCLUSIONES Y RECOMENDACIONES

El estado del conocimiento actual permite establecer una relación causa efecto entre la perforación de los túneles y la disminución progresiva de los caudales de los que en conjunto se pueden denominar manantiales de Cabornera, hasta su completa desaparición. Aunque puede existir cierta influencia climática ésta no justifica la desecación de los manantiales ya que no se conocen precedentes y además se ha visto una clara relación con los golpes de agua producidos en los túneles.

Se considera que para asegurar la restauración de las condiciones naturales del acuífero y por lo tanto la recuperación permanente manantial, se deben analizar las labores complementarias de impermeabilizaciones en la formación Santa Lucia. De todas formas el comportamiento real de estos trabajos se debe analizar después del próximo año hidrológico, tras disponer de los datos obtenidos mediante el programa de control de caudales de los manantiales o propuesto en el apartado precedente.

De manera complementaria y con el fin de apoyar los trabajos futuros de control hidrogeológico es necesario disponer de los datos termopluviométricos en la zona, así como conocer los caudales de salida de agua a través del túnel. Este es el único modo de poder hacer una correlación fiable entre los caudales de los manantiales y la precipitación. Por ello se considera conveniente la instalación en la zona de una estación termopluviométrica con registro continuo de precipitación y temperatura. En este mismo sentido es preciso tener un control permanente de los caudales de salida de agua al túnel por cada una de las formaciones permeables atravesadas.

BIBLIOGRAFÍA UTILIZADA

- IGME (1983). Carbonífero y Pérmico de España. X Congreso Internacional de Estratigrafía y Geología del Carbonífero. Madrid 1983.
- ITGE (1991). Mapa geológico de España. Escala 1:50.000. La Pola de Gordón. Hoja 103.
- ITGE-Diputación de León (1994). Mapa Geológico de la Provincia de León. Escala 1:200,000.
- Lorenzo Vilas Minando (1971). El Paleozoico Inferior y Medio de la cordillera cantábrica entre los ríos Porma y Bernesga (León). Memoria del Instituto Geológico y Minero de España. Tomo 80.
- Documentos facilitados por ADIF:
> Informe final de la campaña de investigación geológica desarrollada en 2004/2005 por túneles de Pajares 1 UTE.
> Cartografía geológica de la galería de acceso al túnel de Pajares. Lote 2. Septiembre 2006.
> Estudio hidrogeológico de la traza de los túneles de Pajares de la línea de Alta Velocidad León-Asturias. Lote I. Julio 2005. EPTISA
> Estudio hidrogeológico del trazado de los túneles de Pajares (lote 2: Folledo-Vidangos) de la línea de Alta Velocidad LeónAsturias. Galería de acceso. Abril 2006. EPTISA
> Proyecto Básico. Túneles de Pajares
$>$ Proyecto Constructivo. Lote 1. Anexo 3. Geología.
$>$ Variante de Pajares. Estudio Geotécnico. Fase A.
> Informe sobre la entrada de agua al túnel de Pajares en el P.K. 11+887. Enero de 2006. (INECO).
> Informe sobre la afección a un manantial en la localidad de Beberino. Septiembre de 2006. (Túneles de Pajares 1, U.T.E.).
> Informe de seguimiento de las labores de reinyección secundaria en el túnel este (actualizado a 20 de septiembre de 2006). FCC-Acciona infraestructuras.
$>$ Informe de seguimiento de las labores de reinyección secundaria en el túnel oeste (actualizado a 20 de septiembre de 2006). FCC-Acciona infraestructuras.
> Informe sobre la afección a un abrevadero y un manantial situados en la localidad de Cabornera. FCC-Acciona infraestructuras. Septiembre de 2006.

ANEXO

MAPAS Y CORTES

[^0]CORTE 1
CORTE HIDROGEOLÓGICO I-I

[^0]: - Fm. Pizarras de Valporquero - La Vid pizarrosa' Pizarras con intercalaciones calcáreas. Permeablidad locaimente baja
 ———— Fms. Dolomias de Felmin y Calzas de la Pedrosa. Dolomias y calzas biociásucas. "La Vid Calcárea
 1 Permeabilidad aila porisuración yto karstificación.
 \Longrightarrow Fm. San Pedro, Arennscas ferrugnosás y areniscas blancas. Permeabilidad locaimente alto por fisuración.

